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\ T ABSTRACT

in this paper we formulete . and solve, & distributed binary
hypothesis-testing problem. We consider a cooperative team thet consists
of two decision makers (DM's); one is refered to es the primary DM and the
other as the consulting DM. The team objective is to carry out binary
hypothesis testing besed upon uncertain measurements. The primary DM
can declare his decision based only on its own measurements; however, in
smbiguous situations the primary DM can ask the consulting DM for an
opinion and i1t incurs 8 communications cost. Then the consulting DM
transmits either a definite recommendation or pleads ignorancs. The
primary DM has the responsibility of making a final definitive decision.
The team objective is the minimization of the probability of error, taking
into account different costs for hypothesis misclassification and
communication costs. Numerical results are included to demonstrate the
dependence of the different decision thresholds on the problem
parameters, including different perceptions of the prior information.

/ Cr 1 . L . -

* Research conducted at the MIT Laboratory for Information and Decision
Systems with support provided by the Office of Naval Research under
contract ONR/NOOQ 14-84-k-0519 (NR 649-003)

** Room 35-406/LIDS, MIT, Cembridge, MA 02139.

This paper has been submitted to the 25th IEEE Conference on Decision and
Control.

Y ."'\ v'rrv.a‘

o,




QA i is ) Nl A 20 A T A A S At dive Jhdn A
................. SLE T R B A It N A -

7
e,

>

'g‘i

1. Introduction and Motivation.

in this paper we formulate, solve, and analyze 8 distributed hypothesis-
testing problem which is an abstraction of & wide cless of team decision
e problems. It represents & normative version of the °“second-opinion®
problem in which & primary decision meker (DM) has the option of

soliciting, ot a cost, the opinfon of @ consulting DM when faced with en
a ambiguous interpretation of uncertain svidence.

.
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K Our major motivation for this reseerch is provided by generic hypothesis-
' testing problems in the field of Command and Control. To be specific,
consider the problem of target detection formalized as a binary hypothesis
testing problem ( H, meens no target, while H, denotes the presense of a

= target ). Suppose that independent noisy measurements are obtained by
two geographically distributed sensors (Figure 1). One sensor, the primary
DM, has finel responsibility for declering the presense or sbsence of a
target, with different costs associated with the probability of false alerm
o versus the probability of missed detection. If the primary DM relied only
on the measurements of his own sensor, then we have & classical
centralized detection problem that has been extensively analyzed; see, for
example, vVan Trees [1]. If the actusl measurements of the second sensor
were communicated to the primary DM, we nave once more & classicsl
centraiized detection problem in which we have two independent
measurements on the same hypothesis; in this case, we require
communication of raw data and this is expensive both from a channel
bandwidth point of view and, perhaps more importantly, because radio or
acoustic communication can be intercepted by the enemy.

Continuing with the target detection problem, we can arrive at the model
that we shall use in the sequel by making the followina assumptions which o
model the desire to communicate as little as possible. The primary DMcan - .., (. A~
look at the data from his own sensor and attempt to arrive at a decision . '“—BA!
using & likelthood-ratio test (irt), which yields a threshold test in the I4°
linear-Gaussian case. Quite often the primary OM can be confident about ;2e%d U
the quelity of his decision. However, we can imagine that there will be

instances that the data will be close to the decisfon threshold,
corresponding to an ambiguous situstion for the primary DM. In such cases-ribution/

i it may pay off to incur a communications cost and seek some informatign:ilnbility Codes -
s from the other available sensor. It remains to establish what is the nature ;“";;c::i/ or
o of the information to be transmitted back to the primery DM.
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In our model, we assume the existence of 8 consulting DM having access to
the data from the other sensor. We assume that the consulting DM has the
ability to map the raw data from his sensor into decisions. The consulting
DM is “activated” only et the request of the primary DM. It is naturai to
speculate that its advise will be ternary in nature: YES, | think there is 8
terget; NO, | do not think there is 8 target; and, SORRY, NOT SURE MYSELF.
Note that these transmitted decisions in general require less bits than the
raw sensor data, hence the communication is cheap and more likely to
escape enemy interception. Then, the primary DM based upon the message
received from the consulting DM has the responsibility of making the final
binary teem decision on whether the target is present or absent.

The need for communicating with small-bit messages cen be appreciated
if we think of detecting an enemy submarine using passive sonar{Figure 2).
We associate the primary DM with an attack submarine, and the consulting
DM with 8 surface destroyer. Both have towed-array soner capsbie of
long-range enemy submarine detection. Request for information from the
submarine to the destroyer can be initiated by having the sub eject a siot-
buoy with 8 prerecorded low-power radio messege. A short active soner
pulse can be used to transmit the recommendation from the destroyer to
the submarine. Thus, the submarine has the choics of obtaining 8 “second
opinion™ with minimal compromise of its covert mission.

Of course, target detecticn is only sn exemple of more genersl binery
hypothesis-testing problems. Hence, one can readily extend the basic
distributed team decision problem setup to other situstions. For example,
in the erea of medical diagnosis we imegine a primary physician
interpreting the outcomes of several tests. in case of doubt, he sends the
patient to another consulting physician for other tests ( at a doller cost),
and seeks his recommendation. However, the primary physician has the
final diagnostic responsibility. Similer scenarios occur in the intelligence
field where the “compartmentalization® of sensitive data, or the
protection of a spy, dictate infrequent end low-bit communications. In
more general military Command and Control problems, we seek insight on
formalizing the need to break EMCON, and ot what cost, to resolve tacticel
situation assessment ambiguities.

12 Literatyre Review,

The solution of distributed decision problems is quite e bit different, and
much more difficult, es compered to their centralized counterperts. Indeed
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there is only a handful of papers that deal with solutions to distributed
hypothesis-testing problems. Tnhe first attempt to {llustrate the
difficulties of desling with distributed hypothesis-testing problems was
published by Tenney and Sandell [2]; they point out that the decision
thresholds are in general coupled. Ekchian [3] and Ekchian and Tenney [4]
deel with detection networks in which downstream DM's meke decisions
based upon their locel measurements and upstream DM decisions. Kushner
end Pacut S] introduced & delay cost ( somewhat similar to the
communicetions cost in our model ) in the case that the observations have
exponential distributions, end performed & simulation study. Recently,
Chair and Vershney [6] have pointed out how the results in [2) can be
extended in more general settings. Boettcher [7] and Boettcher and Tennsy
[8], [9], have shown how to modify the normative solutions in [4] to reflect
humen limitation constraints, and errive in at normetive/descriptive
model that ceptures the constraints of humsn implementation in the
presense of decision deadlines eond increesing humen workload;
experiments using humean subjects showed close agreement with the
predictions of their normative/descriptive model. Finally, Tsitsiklis [10]
and Tsitsiklis and Athans [11] demonstrate that such distributed
hypothasis-testing problems are NP-complete; their research provides
theoretical evidence regerding the inherent complexity of solving optimel
distributed decision problems s compered to their centralized
counterparts ( which are trivially solvable ).

! i f r

The main contribution of this peper relates to the formulation and optimai
solution of the team decision problem described above. Under the
assumption that the measurements are conditionally independent, we show
thet the optimel decision rules for both the primary and the ccnsulting DM
are deterministic and ere expressed as likslihood-ratio tests with
constant thresholds which ere tightly coupled (see Section 3 and the
Appendix ).

When we specialize the general results to the case that the observations
are linear and the statistics are Gaussian, then we are able to derive
explicit expressions for the decision thresholds for both the primary and
consulting DM's ( see Section 4 ). These threshold equations are tightly
coupled, thereby necessiteting an {terative solution. They provide
clear-cut evidence that the DM's indeed operate as team members; their
optimel thresholds ere very different from those that they would use in
isolation, 1.6. in & non-team setting. This, of course, was the case in other
versions of the distributed hypothesis-testing problem, e.g. {2].
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The numerical sensitivity results ( summarized in Section 5 ) for the
linear-Gaussian case provide much needed intuitive understanding of the
problem end concrete evidence that the team members operate in a
more-or-less intuitive menner, especially after the fact. We study the
impact of changing the communicstions cost and the measurement
accuracy of eech DM upon the decision thresholds and the overall team
performance. In this manner we can obtain valuable insight on the optimal
communicetion frequency between the DM's. As to be expected, as the
communication cost increases, the frequency of communicetion (and
asking for a second opinion) decreases, and the tesm performance
approaches that of the primary DM operating in isolation. In addition, we
compare the overall distributed team performance to the centralized
version of the problem in which the primary DM hed access, at no cost, to
bcth sets of observations. In this manner, we can study the degree of
inherent performance degradation to be expected as & consequence of
enforcing the distributed decision architecture in the overall decision
meking process.

Finally, we study the team performence degradation when one of the team
members, either the primery or the consulting DM, has an erroneous
estimate of the hypotheses prior probabilities. This corresponds to mildly
different mental models of the prior situation assesment; see Athans [12].
As expected the team performence fs much more sensitive to
misperceptions by the primary DM as compered to similar misperceptions
by the consulting DM. This implies that, {f team training reduces
misperceptions on the part of the DM's, the greatest payoff is obtained in
training the primary DM.

2. Problem Definition

The problem is one of hypothesis testing. The team has to choose
emong two siternative hypotheses I-{0 and H,, with & priori probabilities

P(Hy)=pg P(H, )=p, (1
Eech of two DM's, one called primary (DM A) and one consuiting (DM B),

receives en uncertein measurement y and U respectively (Figure 1),
distributed with known joint probability density functions
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The final decision of the teem u (0 or 1, indicating H, or H, to be

. true) is the responsibility of the primary DM. DM A initially mekes @
x preliminary decision u, where it can either decide (0 or 1) on the basis of

its own data (fe y), or a1 8 cost (C:0) can solicit DM B's opinion (u =1),
prior to meking the commital decision.
The consulting DM's decision Ug consists of thres distinct messages

(call them : x,v and 2) and is activeted only when asked. We decided to L

assign three messages to DM B, because we wanted to have one message '

indicating each of the two hypotheses end ons message indicating that the

consulting DM is ‘not surs.’ In fact, we proved that the optimal content for

the messages of DM B 1is the ocne mentioned above.
When the messege from DM B {s received,the burden shifts back to '

the primary DM, which is cailed to make the commital decision of the team

based on his own deta and the information from the consulting DM.

We now define the following cost function:

%t N 7‘7{, v,

J:{0,1}x{Hg H,} » R (3)

with J(u,H,) being the cost incurred by the team chaosing u,, when H is
true.
Then, the optimality criterion for the team is & function

% {0,1,11{0, 1}x{Hg,H{} -~ R

with :
J(u H)+C ;  u,=I(information requested)
J*(u,,ug Hy)= { o (S)

.J(u, H) ; otherwise

p ,';p,e cos; s iure of the problem Is the usual cost structure used
- in *ngomsfb Mg’ problerms; | gl% nIso inciudes "the non-negative
s communicetion co§t, which the tasm’33rs"#hen the DM A decides to .
obtatn the consulting DM's tnformation. = - F

' Remark : According to the rules of the problem, when the preliminary
S decision u, of the primery DM 1s 0 or 1, when the finel team decision is 0 or

1 respectively (e Pu=1.ly,zt)=1fori=0,1).
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The objective of the decision strategies will be to minimize the
expected cost incurred

min E[J'(ua,u,,H)l (6)

where the minimization is over the decision rules of the two DMs. Note
that the decision rule of the consulting DM is implicitly included in the
cost function, through the final team deciston u (which is & function of

the decision of the consulting DM).

All the prior information is known to both DMs. The only information
they do not shere is their observations. Each DM knows only its own
observation and, because of the conditional independence assumption,
nothing about the other DM's observation.

The problem can now be stated as follows :

Froblem : Given py, B, the distributions P(y,.y, [ H) for1=0,1 with ey,

g,e?a, and the cost function J*, find the decision rules U,.Ug and u, os
functions

Yo ¥, {0,115} (7)

Y5 g {x,v,2} (8)
end

v 1Y x {%,9,2)+ (0,1} 9)

(subject to: P(u,=i | ua=1)=1 for 1=0,1), which minimize the expected cost.

NOTE : The centralized counterpart of the problem, where a single DM
receives both observations is & well known problem. The solution {s
deterministic and given by a likelihood ratio test (Irt). That is:

V°IV,XYB-’{0.1} (10)
with
0 ¥ A(ga,gp) 2t
’ = ( I I )
tollar ) [ 1 : otherwise
where
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Aly,.4g) = [PCy,.uq | Hodogl/ [PCy .y, 1 Hy)p,]

P(Hg | Yo 4g)/ P(Hy 1Y, 4) (12)
end t is a precomputed threshold
t = [J(O,H )= JO1H N/ [J(1 Hg)= J(O,Hy)] (13)

provided  J(1,Hy)> J(OH;) . Thus, the difficulty of our problem arises

because of {ts decentralized nature.

We will show that, under certain assumptions, the most restrictive
of which {s conditional independence of the observations, the optimal
decision rules for the Fraf/em ere deterministic and given by Irt's with
constant thresholds. The thresholds of the two DMs are coupled, indicating
that the DMs work as 8 {eam rather than individuals.

3. About the Solution to the General Problem

In order to be able to solve the Frab/em , we make the following
assumptions.

ASSUMPTION 1: J(1,H)> JOHg) 5 J(OH)> J(1 H,) (14)
or it 1s more costly for the teem to err than to be correct.

This logical assumption is made in order to motivate the team members to
avoid erring and in order to enable us to algebraically put the optimal
decisions in Irt form.

ASSUMPTION 2: P(y, Iga,H,)= Py, H) ; P(gp Iy .H)= P(ga H) ; 1=0,1 (1S)
or the observations y, and Y ere conditionslly independent.

This sssumption removes the dependence of the one observation on the
other and thus allows us to write the optimal deciston rules as Irt's with

constant thresholds.




ASSUMPTION 3 : Wi lgss of generality assume that :
P(ug=x lu,=1,Hp) ) P(up=v lu,=1Hy) ) P(ug=2 lug=1,Ho)

(16)
Plug=x lug=LHy)  Plug=v lu,sLH,)  Plug=2 lu,=LH,)

This assumption is made in order to distinguish between the messeges of
DM B.

As shown in detail in the Appendix, the optimal decision rules for
all three decisions of our problem (ua, Uy, U ) are given by deterministic

functions which are expressed as //ka/ihoad ratio last!s with constem
thresholds. The three thresholds of the primery DM (two for u, end one

for u ) end the two thresholds of the consulting DM (for u, ) can not be

obtained in closed form. They are coupled, that is the thresholds of one DM
are given as functions of the thresholds of the other DM.

Another important result is that, when the optimal decision rules
ere employed and the consulting DM's decision fs x (or 2), then the optimal
final decision rule of the primary DM is glways 0 (or 1):

P(u=0lu sLug=x,y,)=1 for all y e {y, [P(u=lly)=1,ye ¥} (17
and
Plus=1 | uazl,u‘,:z,ga):l forally. e {y,IP(uslly)=1,yeY} (18

Thus, we can simplify our notation by changing the DM B decisions from x
to 0, from 2 to 1 and from v to ? (which is interprated as :"| am not sure”).
The team's decision process can be now described as follows : Each of the
two DMs raceives an observation. Then, the primary DM can either make the
final decision (0 or 1) or can decide to incur the communication cost
(uczl) and pass the responsibility of the final decision to the consulting

DM. When called upon, the consulting DM can either make the final decision
or shift the burden back to DM A (up=?), in which case the primary DM is

forced to make the final decision, based on its own observation (y ) and

the fact that DM B decided up=? .

A detailed presentation of the facts discussed above can be found in
the Appendix.

!
¥

bt et

et fn ‘s e A A A




[ .-
=
.
i |

.

W

)

Lo
) .
P
b
|
B
o
S
P

4. A Gaussian Example

We now present detailed threshold equations for the case where the
probability distributions of the two observetions are Gaussien. We
selected the Geussian distribution, despite its cumbersome elgebraic
formulae, because of its generality. Our objective {s to perform numericel
sensitivity analysis to the solution of this example, in order to gein
information on the team ‘activities.’

We assume that the observations are distributed with the following
Gaussian distributions :

Yo ~ N2 Yy~ N(p.05%) (19)
The two alternative hypotheses are :
Hy:p=pg OF  Hy:p=iy (20)
Without 1oss of generality, assume that :
o< B (21)

The rest of the notation ts the same as in the general problem
describsd above.

We can show that the optimum decision rules for this example are
given by thresholds on the alservat/on oxes, 8s shown in Figure 3. Before
presenting the equations of the thresholds, we define some variables.

¥} : lower threshold of DM A
¥ f: threshold for the final decision of DM A

¥ Y : upper threshald of DM A

\Pp‘ - Jower threshold of OM B ¥y : upper threshold of DM B
¥o-
]
oﬁ(x):] (21)"05 exp(- 05x2) ox for i=aB ; J=0u ; k=0,1
-00

Note that the above function is the well-known error function, presented
with notational modifications to fit the purposes of the problem.
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w'=z 05 [«p,"(o)-@,"(r)l (22)

" 0,(0)- 5 (0)- 04" (1)+ @\ (1) + 050} (1)-0g (0) (1) 23)
®p(0)-05'(0)+@y%(1)-0,\(1)

5'(0)Dy(1)-D4/(1)0,%0)

W8 = 24

®,2(0)-0g(0)+ @5 (1)-0,'(1) 24
w4z 0.5 [05%0)-05%(1)] (25)
¥, = (gt /2 + 0,2 /(p,~p)] lﬁ[pol(l-po)] (26)
¥ = (g, )/2 + [o2 /(=) Inlpg/(1-pp)] (27)

In (26) and (27), the (centralized) maximum likelihood estimators for each
DM are defined.

COROLLARY 1 : If P(u =0 (i.e. information is requested for some y )
and 1f P(uy=?|u =10 (1.6. "I am not sure” is returned for some Y, when

information s requested), then the optimal final decision rule of the
primary DM is a deterministic function defined by :

0 ir oy sy,
(y,) = (28)
Y ga [ 1 if gq > Vaf
where
0,2 ®aY(0)-05'(0)
AR AL L) (29)

n
TRRT ©p2(1)-@4'(1)

COROLLARY 2: If P(u =1»>0 (1.e. Informetion is requested for some y )

end the primary DM's final decision rule {s the one given by Corollary 1,
then the optimal decision rule of the consulting DM is a deterministic
function defined by :
0 if Y ¢ ¥y
wu={ 7w sy (30)
1 i1 ' <y
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wvhers :

¥(pn)- 2 vy o)~ !
05 ] ( ®,%(0) @uf(o))‘ o Op 1n( ®,%(0)-, (0} )} 31

¥l = min{ y.*+ n
b [vp ll, 'ﬂo (pau(' )"Qaf(i ) Y ll1 'PO @uu( ! )'@a‘(' )

and :

Y

2 -9 ! 2 1(0)-o !
oy | (¢a"(o) 4>a(o))' ; 9 | (4>¢ (0) @a(o))] (32)

vl = max{ .t n W't n
P (v Mg ®u1)-0. 1) Bt © SN0

COROLLARY 3 : Given that the final decision rule employed by the

primary DM {s the one of Corollary ! end that the deciston rule employed
, by the consulting DM s the one of Corollary 2, then the optimal decision

k rule for the preliminery decision u_ of the primary DM is a deterministic

b function defined by :

o if U § ¥
Yolle) =[ I 1w, Yy § ¥ (33)
1 I Wy,
where : s -0
0 -d,(0)+
v+ ——1n ——-5‘—-—) 0 < C <min {W', W2}
p.1 'po 1-®B (‘)-c
- 02, 1-980)+C
AL ¥t ——In(—= ) 5 WA Cowd (34)
L : B 1=@(1)-C
P W,,' . otherwiss
and :
' 02 ®,'(0)-C
V't — ln( -1-‘——) ; 0<C<min {W3, W)
g OO ®g'(1)+C
o 2 ®,4(0)-C
viz {yte——In(2——) ; wWikCuw (35)
k1-Ho ®g'(1)+C
v, ;. otherwise

-----
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REMARK : Observe thet the equations of all the threshelds include (and
possibly reduce to) & “centralized” part (y,*) indicating the relation of

our problem to its centralized countsrpart.

S. NUMERICAL SENSITIVITY ANALYSIS

We now perform sensitivity analysis to the solution of the Gaussian
example. Our objective is to analyze the effects on the team performance
from varying the parameters of our problem, in order to obtain better
understanding of the decentralized team decision mechanism. We vary the
quality of the observations of each DM (the variance of each DM), the &
priori likelihood of the hypotheses and the communication cost. Finally, we
study the effects of different a priori knowledge for sach DM.

We use the following ‘minimum error’ cost function:

0 ; u-=t
JugHy = { (36)
1 ;o Uzl
We do not need to vary the cost function, becsuse this would be

mathematically equivalent to varying the a priort probabilities of the two
hypotheses.

J Effects of varying th 11ty of the observetions of the Prim M

Denote :
C1* = cost incured if the consulting DM makes the decision alone .

We distinguish two cases depending on the cost associated with the
information (18 the of quality of information)

CASE 1: min(P,,1-Pg)s C1*+C T
As the variance of the primary DM increasss, it becomes less costly for N
the team to have the primary DM glways decide the more likely hypothesis, E_!
than request for information. This occurs becayse the observation of DM A

becomes increasingly worthless. Thus, the primary DM prograssively
ignores its observetion end in order to minimize cost hes to choose

..........................................
.........................................................................
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between “de facto” deciding the more likely hypothesis (and incuring cost
equal to the probability of the least likely hypothesis) or "de facto"
requesting for information (and thus incuring the communication cost plus
the cost of the consulting DM). In this case, the prior is less than the
latter ond so the optimum decision of the primary DM, as its varience
tends to Infinity is to alweys decide the more likely hypothesis (Figure 4,
Pg= .8). Thus :

lim P({u=1)-+0
%2_'”(‘,l )

Moreover, the percentage gain in cost achieved by the teem of DMs,
relative to the cost incured by a single DM obtaining a single observation,
assymptotically goes to 0, as the varience of the primary DM goes to
infinity (Figure 5, Py= .8).

An interesting insight can be obtained from Figure S ( Py= .8). As the

variance of the primary DM increases the percentage improvement in cost
(defined ebove) is initially increasing and then decreasing assymptotically
to zero. The reason for this is that for very small veriances, the
observetions of the primery DM are so good that it does not need the
information of the consulting DM. As the variance incrsases, the primary
DM mekes better use of the information end so the percentage
improvement increases. But, at & certain point as the quality of the
observations worsens, the primary DM finds less costly to start declering
more often the more likely hypothesis (ie to bias fts decision towards the
more likely hypothesis) than requesting for information, for reasons
mentioned above, end so the percentage improvement from then on
decreases.

o
e
e
‘. i
'.u

o
L,
5

CASE2: min(P,,1-Py) > C1*+C
With reasoning similer to the above, we obtain that (Figure 4, Py .5)

lim Py =D -1
002 - 00

Moreover, the percentage improvement is strictly increasing (and keeps
incresing to & precomptutable 1imit ; Figure 5, P,= .5). This reinforces the

last point we made in (Case 1) above. Since in the present case it is
alwaeys less costly for the primary DM to request and use the information
than to bias its decision towards the more likely hypothesis, the
percentage improvement curve does not exhibit the non-monotonic
behavior observed in (Cese 1) above ( where Py=.8).

.............................................................
....................................................
......................................




Consylting DM
As the varience of the consulting DM's observations incresses, less
information is requestsd by the primery DM, that is the primary DM's upper
and lower thresholds move closer to each other (Figure 6). This is
something we expected, since information of lesser quality is less
profitable (more costly) to the teem of DMs.

¥e should note here that the thresholds of a DM is an slternetive way

of representing the probabilities of the DM's decisions, since the decision
regions are characterized by the thresholds. For example :

P(uazl) =ZI P(Uu | H) P(H)
H oy wlcy¢ ¥,

The thresholds of the consulting DM demonstrate some interesting
points of the team behavior (Figure 7). For small values of the veriance
they are very close together, as the quality of the observations is very
good and so the consulting DM is willing to make the final team decision.
As the variance increases, DM B becomes more willing to return Lb:? (i.e.

"I am not sure”) end lst DM A make the final team decision. As the
veriance continues to increase, the thresholds of the consulting DM
converge again. It might seem counter-intuitive, but there {s & simple
explanation. The consulting DM recognizes that the primary DM, despite
knowing that the quality of the consulting DM's information is bad, is
willing to incur the communicstion cost to obtsin the information. This
indicates that the primary DM s ‘confused’, that is, the a posteriori
probabilities of the two hypotheses (given its observation) are very close
together. Hense, the consulting DM becomes more wiiling to make the final
decision. After 8 certain point (ap2z62.4) the primary DM does find it

worthwhile to request for information at all.

REMARK : Note in Figure 7 thet the thresholds of the consulting DM
converge to 1 which would have been the maximum likelihood threshold
had the & priori probabilities of the two hypotheses been gqual. But, the &
priori probabilities waich he consulting Dr1 uses in Its colculations are
functions of the given a priori probabilities (ie p,) end the fact that the

primery DM requested for information (ie P(u,=I | H) ). In fact, the
consulting OM uses as its & priori probabilities its own gstimates of the
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primary DM's a posteriori probabilities. That is:

3 P(Hy) P(u =1 | Hy)
P =D) =
N ol =D %P(H) Plu=1 | H)

(37

% From the above, we deduce that for 1arge variances (op2z62) the estimatess,

of the consulting DM, for the & posteriori probabilities of the primary DM
are very close to .5, reenforcing our point about the primary DM “being

confused.”
Finally, 1t is clear, thet as the variance of the consulting DM oo
increases, the percentage gain in cost, achieved by the team of DMs, ¥

decreases to 0, since the primary DM eventusily mekes ail the decisions
alone (centralized).

f{ varuing th mmunicati

Increesing the communication cost is very similar to increasing the 2
variance of the consulting DM, since in both cases the team “gets less for S
its money” (because the team has to incur an increesed cost, either in the '
form of an increased communication cost, or in the form of the final cost,
because of the worse performance of the consulting OM).

The thresholds of the primary DM, exhibit the same behavior as in 5.2
above (converging together at C=.35). The thresholds of the consulting DM
(Figure 8) converge together for the same reasons &s in 5.2 sbove. Of
course, the thresholds do not stert together for smail values of the
communication cost (as in 5.2), because low communication cost does not
imply ability for the consulting DM to make accurate decisfons. In fact, for N
small values of the communication cost, DM A is compelled to request for U
information more often than what is really needed and so the consulting
DM returns more often upz? (ie "I am not sure”) and lets DM A meke the

team final decision.

Agein it is clesr that, as the communication cost increases, the Fi
percentage gain achieved by the team of the DMs decreases to zero (as the o
communication becomes more costly and less frequent, until we reach the o
centralized cass). =

2.4 Effects of verying the a priort probabilities of the hypotheses

This case does not present many interesting points. As expected, there is
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symmetry in the performance of the team around the line py= 0.5 . The
closar'bo is to 0.5 the more often information is requested by DM A

(Figure 9) end the more often "I am not sure” is returned by DM B (Figure
10). This is understandable, because the closer p, is to 0.5, the bigger the

a priort uncertainty. Consequently, the percentege improvement achieved
by the team of the DMs is monotonically increasing withp, from 0 to 0.5

and monotonically decreasing from 0.5 to !.

f i f

CASE 1 Only the consuiting DM knows the true p,
From Figure 11, whers the true p, is 0.8, we deduce thet our model 1is
relatively robust. I the primary DM's erroneous p, is enywhere between

0.7 and 0.9, performance of the teem will be not more then 108 away T
from the optimum.

CASE 2; Only the primary DM knows the true p, =
As we see in Figure 12, where the true p, is 0.8, our model exhibits ! E
remarkable robustness qualities. If the consulting DM's erroneous p, is &8s N

far out as 0.01, the performance of the team will not be further than 73 H)
away from the optimal. This can be explained by looking at the consulting At
DM's thresholds as functions of p, (Figure 13). We observe that for values

of pg between 0.01 and 0.99, the thresholds do not change by much. This

occurs because, as explained in detail in 5.2 above, the consulting DM
knows that the primary DM requests for information when its 8 posteriori
probabilities of the two hypotheses are roughly equsl, which is the case
indeed. As alreedy stated, the consulting DM uses as its a priori L
probabilities its estimates of the a posteriori probebilities of the primary L
DM. Therefore, the consulting DM's estimates of the primary DM's a
posteriort probabilities are good, besides the discrepancy in p,, end the -

team's performance is not tampered by much.

The authors would like to thenk Professor John N. Tsitsiklis for his
valuable suggestions.
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APPENDIX : Solution to the General Problem

ASSUMPTION 1:  J(1LH»> J(OHg) 5 J(OH,)»> J(1H,) (38)
or it is more costly for the team to err than to be correct.

This logical assumption is made in order to motivate the team members to
avoid erring and in order to enable us to put the optinal decisions in Irt
form.

ASSUMPTION 2:: P(y, Ig,,Hi): Py, H) ; P(gp ly, H)= P(gp H) ; 1=0,1 (39)
or the observations y, end yg ore conditionally independent.

This assumption removes the dependence of the one observation on the
other and thus allows us, 8s we are about to show, to write the optimal
decision rules as Irt's with constant thresholds.

ASSUMPTION 3 : Without 19ss of generglity assume that :

P(ug=5 | U,=1,Ho) , P(ugzy | uyz1Hg) P(ug=2 | uyz1,Hg)

2 (40)
P(ug=x | u,=LH,) P(ug=v [ u,=LH,) Plug=2 | u,=1,H,)

This assumption is made in order to be able to distinguish between the
messages of DM B.

........................

- PR SS
. N . .
KAD_AIAL.I‘A-L‘LA\A;A‘_-'-*;‘"A’-'@

Kot M i Ak et E A T T PR Sy

-
[
‘w”

1

- a
.'
N




........................................

v e

20 i

THEOREHN 1 : Given decision rules u, end u, end that informetion is
requested by the primery DM for some y.eY, (i.e. P(ua=1)>0 ), then the

T X _& 8 o = T, et et
S S ! RN

. optimal final decision of the primary DM after the information has been
o received, can be expressed as a deterministic function
A ] 1
)
b0 Yo ¥ x (x,v,2) (0,1} )
’ L3
which is defined as ikelthood ratio tests : '
0 ; I ug=t and A(y,) 2 q -
B
¥y (YgUg)= for 1=x,v,2 (41) k.
.- r ey [ 1, otherwise
X where :
% Po P(Y, | Hy) -
> ASY) = Do Pl M) (42)
. D, P(Q,, l H') o
and :
Plug=t | ug=I, Hy) [JC1,H,)-J(0,H,)]
u‘i = ’ 1:7(,9,2 (43)
Plug=1 | U =1, Hg) [J(1,Hg)=J(0,Hg)]
Remark : (29) is the equation for the corresponding threshold of the
Gaussien example. %
. L
_ THEOREM 2 : Given the optimal decision rule u, (derived in Theorem 1),
l';‘ 8 decision rule u, and that information is requested for some y e¥_ (i.e. :
' P(u,=1)>0),the optimal decision rule of the consulting DM is a deterministic '
I_;I function
o Yy Yﬂ - {x,v,2}

defined as the following likelihood ratio tests :

X i1 Aglyg) 20y end Aglyg) 2 b2
wup = { v 1f Ady)<dy end Agly)2bs (44)
4 11 Aglyg) <D 8nd Aglyy) < b3




Po Plyg | Hy)
(g) = ——t 2 45
RAY Plyg | Hy) (“3)

end:
Pug=1|H) EIP(U{ | ug=1,ug=v,Hy )= PQug | ug=L,ug=x,Hy )(upHy )

P(u =11 Hy) ZlP(u, | Ug=1,ug=,Ho)= P(uy | U =1, uy=v Ho)h(utp, Ho)
P(ug=l | Hy) %lP(u,l =L Uy=2,Hy )= Plup | Uy=Lugzx,Hy Jug Hy)
= — (47)
& Pu,=11Hy) zu:f[P(u, Fug=1,Ug=,Ho)= Plug | Ugy=1,ug=2,Ho) Mg, Hy)
P(u¢=l I Hi) Z[P(uf' Ua=l,up=Z,H1 )' P(ufl U¢=I,u9=V,H1 )“(ulel)
b3 s u{ (48) =

Pu,=I | Hg) EIP(uf | ug=1,up=v,Hg)= P(uy | uy=1,uq=2,Hg)hi(ug,Ho)

Equivalently, we can write :

X i1 Aglyg) 2B
Wy ={ v I A By end Alyg) 2By  (49)

where :
B, =mex { b, b)} (50)

and :
ﬁ2=min{b2, 03}. (51

Remark : (31) and (32) are the equations of the corresponding thresholds
of the Gaussian example.
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LEMMA 1 : Given the decision rule Ug of the consulting DM and the
final decision rule u, of the primary DM, the preliminary deciston rule u,

of the primary DM can be expressed as & deterministic function

Yo : Y, (0,01

defined as the following degenersle (becsuse the thrasholds are

functions of y ) Irts :

0 If Afy)22y end AL(y,) 285
YolYe) = [ I Ir Ay <og ond 1/A,(y,) < 1/a3
1 it A(y) <oy end 1/A(y,) 2 1/83
where A (Y ) isdefined in (42) and :

J(O,H1) = J(‘;Hi)

°1 -

J(1,Hg) = J(O,Hy)

u,zu,P(u’ | Uy=Lug,g) Pup | uy=LHy DIdCug Hy) + €1 = J(OH,)
% * J(o,Ho)-—ufiu Py | U1 Uy ) Py | U, =1 ol ) + C)
B
u,zu Py | 0Ly o) Py | U=LH, ) Hy) » €1 - (1 H,)
J Ul

%" 0 -gu:(u, UL g 4.) Py | gL Ho) g i) + €1

(52)

(53)

(54)

(S5)

We proceed to show that the thresholds derived above

ere /ndependent of y_.

COROLLARY 1 : If for some y_ 1information s requested, according to
the rule of Lemme 1 and uy=x (or 2) 1is returned, then the optimal final
decision u, of the primary DM s always O (or 1); thatis:
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Plu=0lu,sLug=xy) =1 forellye{y |Plus=llyl=t,yey} (S6)
and
Plu=1luzLuz=2y)=1 forallye {y |Pustly)l=t,yev¥) (57)

Remark : From Corrolary 1 we can now give another interpretation to the
team procedure: the primery DM can decide O or 1 using his own
observetion or cen decidebecause of uncertainty, to {incur the
communication cost (C) and shift the burden of the decision to the
consulting DM. Then it is the consulting DM's turn to choose between
deciding O or 1, or, because of uncertainty, shifting the burden back {at ng
cost) to the primary DM, which {s required to make the final decision
given his observation and the fact that the consulting DM's observation is
not good enough for the consulting DM to make the final decision.

According to the above, we can simplify our notation of the
consulting DM's messages by chenging x to 0, 2 to | and v to 7
(which fs interpreted as the consulting DM saying "I am not sure®).

Define the following secondeary variables :

By = J(1,Hg) = J(OHy) (58)

Ay = J(OH,) = J(1LH,) (59)

LY [P(ug=1 [ H,) = Plus=1 1 H)l (60)

Bg*ad,

2 Adg A [P(ug=" | Hg)P(ug=1 | Hy) = P(ug=? | H;)P(ug=1 | H)l 61
) Mg Plug=? | Hg) + Ay Pug=7 | H,)

3 g AJ,(P(ug="? | HyJP(up=0 | Hg) - P(ug=" | Hy)P(us=0 | H, )] (62)
) 8y Pug=? | Hp) + A Plug=7 | Hy)

" Adg AJ; [P(ug=0 | Ho) = P(ug=0 [ H))] (63)

Bgrady

T e




e 8 (=

R 217 Plugs1 I H) Ay + € .

E _ IPlug=1 1 Hy) + Plug=? | Kl &y = C 5
2 22 bl [Ho) + Pluge? | Fo)l g + C

Plug=0 | Hy) AJy +C
03¢ 3 (66)

[P(Us=0 ’ H| )’P(usz? ' H1 )] AJI + C
[P(ug=0 | Hy)+P(ug=? | Hg)l Ay - C

v o - e
B ‘
a0 .
» L .

P _
t THEOREM 3 : Given the optimum final decision rule u, of the primary
DM (derived in Theorem 1) and the optimum decision rule U of the

consulting DM, the optimum decision rule for the preliminary decision of
the primary DM is given by a deterministic function

Yo: Y, (0,11
defined by the following likelihood ratio tests :

0 if Au(gc)zm
W = {100 A oy end Ay ray (68)
{ if AG(UQ)(Gz

where :

8y 1f 0<Csmin{w! Wi

a,:[ 02’2 if W2<C$W‘ (69)

e, otherwise

&5, If 0<Cemin{wdwd

oz e, I WECoW (70)
8,  otherwise

Ramark : (34) end (35) ere the equations of the corresponding thresholds

for the Geussian example.
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* OPT.1MAL POLICIES ARE DEFINED BY THRESHOLDS
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